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Abstract: Temperature is an essential weather component because of its tremendous impact on humans and the environment. 
As a result, one of the widely researched parts of global climate change study is temperature forecasting. This work analyzes 
trends and forecasts a temperature change to see the transient variations over time using daily temperature data from January 1, 
2016 – November 3, 2019, collected from a weather station located at the Memphis International Airport. The Mann-Kendall 
(M-K) test is used to detect time series analysis patterns as a non-parametric technique. The result from the test revealed that 
the temperature time series increased by 0.0030 °F almost every day, implying that the location is becoming hotter. The other 
method of analysis is the autoregressive integrated moving average (ARIMA) model, which fits temperature time series using 
its three standard processes of identification, diagnosis, and forecasting. Considering the selection criteria, The seasonal 
autoregressive integrated moving average (SARIMA) (3, 0, 0) (0, 1, 0)365 model is found as appropriate for the studied 
temperature data on a daily basis. Finally, the selected model is utilized to estimate the next 50 days; after November 3, 2019, 
the temperature forecast showed an increasing trend. This observed trend provides an understanding of daily temperature 
change in the studied area for that specific period. 

Keywords: ARIMA, Daily Average Temperature Data, Mann–Kendall (M–K) Test, Trend, Memphis International Airport, 
SARIMA 

 

1. Introduction 

Temperature variation resulting from climate change has 
become a global concern as it is correlated to global 
warming. The fifth IPCC assessment report revealed that the 
mean temperature increased by 0.85°C through 1880 to 2012. 
[1]. Global warming significantly impacts the natural 
ecology, agricultural production, and human health [2]. 
Rising temperatures have already intensified drought, 
flooding, rising sea level, and weather extremes. [1]. 
Furthermore, temperature variations will delay the onset of 
the monsoon and cause water loss from the soil, reducing 
crop productivity and lowering water levels in surface and 
groundwater [3]. Because of ocean-atmosphere circulation, 
land cover use, and other linked characteristics, surface air 
temperature fluctuates more at the regional scale than at the 

global average scale [4]. However, because the temperature 
is affected by many climate elements, it is an ever-difficult 
endeavor to predict the changes in temperature for the 
projected duration [5]. Therefore, it is required to conduct 
quantitative analyses of temperature fluctuation to take the 
appropriate steps to mitigate adverse effects. In temperature 
forecasting research, time-series analysis is considered as an 
essential direction [6-8]. 

Since the Mann-Kendall (M-K) test incorporates the better 
treatment of outliers, It is frequently employed in weather 
and climate time series data to discover trends. [9, 10]. 
Various trend analysis studies have been carried out at 
various spatiotemporal scales, underscoring the importance 
of the M-K test. The M-K test was used in a research in 
Ethiopia's Woleka sub-basin to detect time series trends of 
precipitation and temperature. [11]. In a study the Mann-
Kendall test, Sen's slope estimator, and linear regression were 
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used to examine yearly and seasonal temperature patterns, 
along with temperature extremes.[12]. One study used the M-
K test to identify changes in environmental and 
meteorological features at a Kolkata station from 2002 to 
2011, and the M-K test's performance was reliable at the 
verified significant level [13]. In addition, a study looked at 
the trend in rainfall time series at Fifteen sites in the Swat 
River basin from 1961 to 2011 using both non-parametric M-
K and SR statistical tests, which provided a daily forecast of 
the parameters with precision [14]. Given this, it is 
reasonable to conclude that the standard-Kendall test is 
widely utilized to assess how parameters change over time. 

In time series analysis, projecting values in the later phase 
are based on previous observations of the variable under 
examination. Numerous studies in hydrology and 
meteorology used the ARIMA method to achieve more 
accurate forecasts, and this method has essentially 
superseded older statistical techniques [15, 16]. Another 
study used a seasonal ARIMA model for agricultural 
irrigation and reported achievement of a significant level of 
model fitting in strategic planning [17]. Likewise, one study 
used a SARIMA model to assess temperature trend in Assam 
[18]. Moreover, an investigation used the ARIMA model to 
forecast monthly mean temperature and discovered a falling 

trend [19]. A substantial number of studies have successfully 
comprehended climate parameters and have provided a better 
understanding of the hydrological system using ARIMA and 
SARIMA models [4, 20-22]. 

This study is designed to investigate the temperature time 
series of daily average temperature data to discover trends 
using the non-parametric M–K test with the ARIMA model 
technique. The SARIMA model is fitted to daily temperature 
data (Jan 1, 2016 – Nov 3, 2019). The chosen model is used 
to forecast temperature for the next 50 days from Nov 4, 
2019, to Jan 23, 2020, using Box-Jenkins’s technique. 

2. Materials and Methods 

2.1. Data Collection and Study Area 

The data for the temperature time series came from a 
weather station located at the Memphis International Airport, 
as seen in Figure 1. This data represented the local weather of 
Memphis, Tennessee, and offered the amount of data required 
to fit the SARIMA model. The data gathered from the station 
included temperature readings at the daily interval from Jan 
1, 2016, to Nov 3, 2019. 

 

Figure 1. Memphis International Airport Weather Station Site Map. 

2.2. Trend Analysis 

The Mann-Kendall test implies that data are not normally 
distributed, and it additionally considers the effect of outliers. 
As a result, trend analysis frequently employs the non-
parametric M–K test and the Sen slope estimator [9, 12]. 
Using a two-tailed test with a 5% significance level [13], the 
alternative as well as null hypotheses are H0 = There is no 
discernible trend in the time series. and H1 = There is a rising 
or falling trend. [12]. Thus, the following equations (1) and 
(2) can be used to determine Mann–Kendall test statistics. 

S � ∑ ∑ sign		x� � x
�������������                         (1) 

���		�� � 	 �		����	�������∑ ��	�����	��������� �!              (2) 

where xi and xk are consecutive data in the series; n is the 
sample size; ei is the number of ties at the ith value, and m is 
the number of ties if the value is tied. 

ZC, the standard test statistic, was calculated as follows: 

"# �	
$%
& '��
()*+	'� 	when	� / 0	

0	when	� � 0'��
()*+	'� 	when	� 1 0

                    (3) 

The ZC symbol indicates the trend's direction. A negative Z 
number indicates a downward trend, whereas a positive ZC 
value indicates an upward trend [13, 23]. The magnitude of 
the slope (change per day) was determined using Sen's 
estimator [9, 12]. 
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2.3. ARIMA Model 

ARIMA is the acronym for the autoregressive integrated 
moving average (ARIMA) model, widely known as the Box-
Jenkins model (p, d, q). The order of the autoregressive (AR) 
is p, the degree of difference is d, and the order of the moving 
average (MA) is q. [24]. It is almost as if the independent 
variables in the regression model are the past values of the 
time series. 

Equation 4 or 5 can be used to express the general 
equation [22]. 

23 � 4 +	6�23�� + 6�23�� +	……+6823�8 + 93 + :�:3�� +:�:3�� +⋯…:<:3�<                                (4) 

φ>	L� ∗ 	1 � L�BYD � 4 + θF	L� ∗ eD                  (5) 

where 6� , 	6�, ……… . . 68		�IJ	:�, :�……………:<  are the 
regression coefficient, YD	is the time series data (temperature), 
c is the intercept, 68 indicates the AR part's order, 
θF	L� indicates the MA part's order, and d indicates the 
differencing, eD is called the random error amount. 

If seasonality is considered, then the ARIMA model will 
become a seasonal autoregressive integrated moving average 
(SARIMA) model and represented by ARIMA (p, d, q) (P, D, 
Q) S [19]. S stands for the number of seasons per year, P for 
the seasonal AR, D for the seasonal difference, and Q for the 
seasonal moving average. 

The first stage in fitting the ARIMA model is to ensure that 
the time series is stationary. The Augmented Dickey and 
Fuller (ADF) unit root test are used to determine the 
stationarity of a time series data set [19]. The test's null and 
alternative hypotheses are H0: Series has a unit root and H1: 
Series has no unit root, respectively [19]. The ADF test 
statistics must be smaller than the crucial value to reject the 
null hypothesis. The transformation should be done using the 
differencing procedure if the time series is not stationary 
[13]. Following the discovery of the stationary time series, 
the autocorrelation function (ACF) and partial 
autocorrelation function (PACF) are used to determine the 
appropriate order of AR (p) and MA (q) [18]. 

The model coefficients are estimated using the least square 
approach after the appropriate values of p, d, and q have been 
determined. The residuals are then examined using a set of 
criteria, assuming that they are not autocorrelated and 
normally distributed [24]. Within a 95 percent confidence 
interval, the residual's ACF should not differ from zero. 
Furthermore, the histogram of the residual will have a bell 
shape, indicating that it is normally distributed. 

Akaike's information criterion (AIC) and Bayesian 
information criterion (BIC) are used to select models [13]. 
Then the model with the least AIC and BIC values is selected 
as a best-fit model [21]. 

KLM = 2O − 2 ∗ ln		Q�                      (6) 

RLM = O ∗ ln	I� − 2 ∗ ln		Q�                 (7) 

where k is the number of model parameters, L is the 
likelihood function's maximum value, and n is the number of 
observations. 

Finally, if the model has been evaluated using the root 
mean square error (RMSE), the mean absolute error (MAE) 
or mean absolute percentage error (MAPE) is employed for 
the predictive capability, as shown in equation 8-10. The 
minimum value of the RMSE, MAE, and MAPE is ideal for 
the model's adequacy. The RMSE, MAE, and MAPE 
equations are presented in the equation (8), (9), and (10). 

RMSE = 	V∑ WXY	Z[\��XY	>]^B�_`
�

�D��                   (8) 

MAE = ∑ WXY	Z[\��XY	>]^B�_
�

�3��                     (9) 

MAPE = �
� ∗ ∑ cWXY	Z[\��XY	>]^B�_� d ∗ 100�3��          (10) 

The value obtained at time t is Yt (obs), the predicted value 
is Yt (pred), and the number of observations is n. 

3. Results and Discussion 

3.1. Descriptive Statistics 

Table 1 shows the descriptive statistics for the temperature 
time series. The skewness, in this case, is negative, indicating 
that the left-handed tail is longer than the right-handed tail. 
The first and third quartiles are 52.60 °F and 79.27 °F, 
respectively, according to the box plot in Figure 2. 

Table 1. Descriptive statistics of the temperature data. 

Temperature (degree F) 
Mean 64.83862698 
Standard Error 0.434537702 
Median 67.20285714 
Mode 71.84 
Standard Deviation 16.27632295 
Sample Variance 264.9186888 
Kurtosis -0.681672829 
Skewness -0.529720862 
Range 76.88296296 
Minimum 13.03703704 
Maximum 89.92 
Count 1403 

3.2. Mann–Kendall Trend Analysis 

Table 2 shows the M–K test statistics for the time series 
data. Since the threshold value (p-value = 0.006) is less than 
0.05, the M–K tests revealed patterns in temperature time 
series. Kendall's positive value implies a positive upward 
trend; hence, the temperature time series, which previously 
had a tendency, has been demonstrated to have a positive 
upward trend. According to Sen's slope, the temperature time 
series exhibits a trend of 0.003 ℉ every day, which is the 
slope of the trend. 
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Figure 2. Boxplot of the daily average temperature time-series data. 

Table 2. MK Statistics at 5% significance level for Memphis International Airport. 

Station Parameter Sen’s slope Kendall’s τ p-value (Two-tailed test) alpha, ɑ Test interpretation 

Memphis International Airport Temperature 0.003 0.049 0.006 0.05 Trend in series 

 

3.3. ARIMA Model 

Figure 3 illustrates a time series depiction of daily surface 
temperature. The data appear to be stationary in the graph. A 
consistent pattern in the data, on the other hand, suggests 
seasonality. As seen in Figure 4, this figure is further studied 
by deconstructing it using the additive method. Figure 4 

shows that the data contains a seasonal component and a 
wavelike structure. 

As a consequence, instead of the ARIMA model, the 
SARIMA model is investigated. Moreover, a trend in the 
time series data is also depicted in the figure. Furthermore, 
the inclusion of outliers in the data is indicated by the 
random component. 

 

Figure 3. Time Series plot for daily surface temperature. 
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Figure 4. Decomposition of daily time series surface temperature by the additive method. 

All The unit root in the daily temperature time series data 
is checked using the ADF test. The ADF data and 
accompanying p-value for the ADF test is shown in Table 3. 
The null hypothesis with a unit root is rejected because the p-
value is less than 0.05. As an outcome, the daily temperature 
time series data is stationary, and there is no need for the 
difference. 

Table 3. ADF unit root test of the original daily temperature time series. 

 ADF statistics p-value 

Daily Temperature time series -7.6689 0.01 

All The ACF and PACF of the daily temperature time 
series are shown in Figures 5 and 6. The ACF plot in Figure 5 
looks like a sine wave, indicating that the data has much 
seasonality. As a result, the seasonal difference should be 
considered to eliminate seasonality. PACF may be used to 
detect the order since ACF shows exponential series decaying 

to zero, suggesting the autoregressive model exclusively. As 
shown in figure 6, the PACF is significant at lags 1, 2, and 3, 
and after lag 3, the PACF shows an irregular pattern by being 
above and below the confidence limit. Furthermore, there is 
no discernible seasonal rise between 365 and 730. As a result, 
the non-seasonal AR term's order is possibly 3, whereas the 
seasonal AR term's order could be zero. 

 

Figure 5. ACF plot for daily surface temperature time series. 

 

Figure 6. PACF plot for daily surface temperature time series. 

The resulting model for this daily temperature data is SARIMA (3,0,0) (0,1,0)365, with three no seasonal 
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autoregressive parameters and one seasonal difference, 
considering the low AIC and BIC values. The estimated 
parameters for the selected model are shown in Table 4. The 
table shows that all coefficients are significant because the t-
statistics are greater than 1.96 in all situations. Table 5 

reveals that the highest RMSE, maximum MAE, and 
maximum MAPE for the selected model are 6.86, 4.28, and 
8.23 percent, respectively. These numbers can be considered 
when determining whether or not the model is a good fit. 

Table 4. Parameter estimation for the daily temperature time series. 

Model Variable Coefficient Std. error t-statistics AIC BIC 

(3,0,0) (0,1,0)365 
AR (1) 0.9043 0.0306 29.55229 

7264.6 7284.38 AR (2) -0.3694 0.0401 -9.21197 
AR (3) 0.1635 0.0307 5.325733 

Table 5. Measures of the accuracy of the model fit. 

 RMSE MAE MAPE 

Measures of accuracy 6.858348 4.285985 8.235479 

The ACF of the residuals has no substantial autocorrelation, as seen in Figure 7. Furthermore, the histogram of the residuals 
is more or less normally distributed. As a result, the residuals are white noise, indicating that the chosen model can forecast. 

 

Figure 7. Residual of the SARIMA (3,0,0) (0,1,0)365 model. 

Figure 8 shows the time series forecast for the next 50 days. A blue line represents the forecasts. The light-colored area 
indicates a 95 percent prediction interval. 

 

Figure 8. Forecast using the SARIMA (3,0,0) (0,1,0)365 model. 
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4. Conclusions 

The Mann–Kendall (M–K) test and the Box–Jenkins’s 
method dubbed SARIMA were used in this work to 
determine daily average temperature variability and 
forecasting. For the Memphis international airport station, 
Mann–(M–K) Kendall's trend analysis showed a growing 
upward trend of 0.0030F each day. In addition, the 
identification and diagnosis for the SARIMA model reveal 
that the model fits well. The residuals analysis also shows 
that the model fits all assumptions. Moreover, the accuracy 
measures validate the model's predictive capacity. The 
following 50 days of data after November 3, 2019, has been 
projected using the (3, 0, 0) (0, 1, 0)365 model. The analysis 
of this study will give policymakers insight into the rate of 
temperature change during that period and the scope and 
extent of possible temperature change. 
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